Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2027
-
Free, publicly-accessible full text available March 15, 2027
-
Free, publicly-accessible full text available March 1, 2027
-
Free, publicly-accessible full text available January 1, 2027
-
Free, publicly-accessible full text available February 1, 2027
-
Free, publicly-accessible full text available December 1, 2026
-
Despite several known idiosyncrasies separating the synchronous and the asynchronous models, asynchronous secure multi-party computation (MPC) protocols demonstrate high-level similarities to synchronous MPC, both in design philosophy and abstract structure. As such, a coveted, albeit elusive, desideratum is to devise automatic translators (e.g., protocol compilers) of feasibility and efficiency results from one model to the other. In this work, we demonstrate new challenges associated with this goal. Specifically, we study the case of parallel composition in the asynchronous setting. We provide formal definitions of this composition operation in the UC framework, which, somewhat surprisingly, have been missing from the literature. Using these definitions, we then turn to charting the feasibility landscape of asynchronous parallel composition. We first prove strong impossibility results for composition operators that do not assume knowledge of the functions and/or the protocols that are being composed. These results draw a grim feasibility picture, which is in sharp contrast with the synchronous model, and highlight the question: Is asynchronous parallel composition even a realistic goal? To answer the above (in the affirmative), we provide conditions on the composed protocols that enable a useful form of asynchronous parallel composition, as it turns out to be common in existing constructions.more » « lessFree, publicly-accessible full text available December 7, 2026
-
Free, publicly-accessible full text available March 1, 2027
-
Human cytochrome P450 (P450) 27A1 catalyzes the hydroxylation of cholesterol and vitamin D derivatives. P450 27A1 is localized in the mitochondria and is reduced by its redox partner protein adrenodoxin twice for each catalytic cycle. The reliance on adrenodoxin is conserved across all human mitochondrial P450 enzymes. This study examines the adrenodoxin interaction with P450 27A1 and draws comparisons with studies of other P450 enzymes to determine if differences exist. The P450-adrenodoxin complex structure was examined by chemical crosslinking and analyzed by mass spectrometry. The effect of adrenodoxin concentration on P450 27A1 function was assessed by studying effects on steady state enzyme kinetics parameters and equilibrium substrate binding. The results suggest that adrenodoxin binds to P450 27A1 at a proximal site like other P450 enzymes but differs in the specific residues involved. Furthermore, the presence of adrenodoxin and/or substrate decreases the number of interprotein and intraprotein crosslinks observed, indicating that these components change the conformation of the P450 enzyme. Increased adrenodoxin concentration causes the P450 and vitamin D3 kcat value to increase, the kcat/Km value to decrease, and the substrate Kd to remain constant. These results suggest adrenodoxin alters enzyme efficiency beyond electron transfer without affecting substrate loading. The adrenodoxin effects on P450 27A1 kinetics and equilibrium constants differ from those of other human mitochondrial P450 enzymes. In total, these structural and functional studies suggest that while the general adrenodoxin binding site and function is conserved across P450 enzymes, the details and additional effects of this interaction vary.more » « lessFree, publicly-accessible full text available February 1, 2027
-
The combination of multiple polymerization mechansisms in a single polymer chain allows for the synthesis of block copolymers with blocks of significantly different chemical structures. Previously, the combination of cationic...more » « lessFree, publicly-accessible full text available January 1, 2027
An official website of the United States government
